Visualizing Scissors Congruence
نویسندگان
چکیده
Consider two simple polygons with equal area. The Wallace–Bolyai–Gerwien theorem states that these polygons are scissors congruent, that is, they can be dissected into finitely many congruent polygonal pieces. We present an interactive application that visualizes this constructive proof. 1998 ACM Subject Classification I.3.5 [Computational Geometry and Object Modelling] Geometric Algorithms, languages and systems, K.3.1 [Computer Uses in Education] Computerassisted instruction
منابع مشابه
A Smooth Scissors Congruence Problem
Classifying space techniques are used to solve a smooth version of the classical scissors congruence problem.
متن کاملScissors Congruence for Certain k-polygons
It has been proved that any two polygons having the same area are scissors congruent by Bolyai in 1832 and by Gerwien in 1833, respectively. It is well known that the concepts of congruence and scissors congruence are different for the set of polygons in the Euclidean plane. Let C be a unit circle divided into n parts equally. We denote the set of ends of these parts on C by S = {P0, P1, . . . ...
متن کاملCubic graphs, their Ehrhart quasi-polynomials, and a scissors congruence phenomenon
The scissors congruence conjecture for the unimodular group is an analogue of Hilbert’s third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose vertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of pol...
متن کاملA FEASIBLE ALGORITHM FOR CHECKING n-SCISSORS CONGRUENCE OF POLYHEDRA IN R
While in R2, every two polygons of the same area are scissors congruent (i.e., they can be both decomposed into the same finite number of pair-wise congruent polygonal pieces), in R3, there are polyhedra P and P ′ of the same volume which are not scissors-congruent. It is therefore necessary, given two polyhedra, to check whether they are scissorscongruent (and if yes – to find the correspondin...
متن کاملScissors Congruence, the Golden Ratio and Volumes in Hyperbolic 5-Space
By different scissors congruence techniques a number of dissection identities are presented between certain quasi-Coxeter polytopes, whose parameters are related to the golden section, and an ideal regular simplex in hyperbolic 5-space. As a consequence, several hyperbolic polyhedral 5-volumes can be computed explicitly in terms of Apéry’s constant ζ(3) and the trilogarithmic valueL3(π5 ).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016